
T E C H N I C A L R E L E A S E

Julearn: an easy-to-use library for
leakage-free evaluation and
inspection of ML models

Submitted: 13 November 2023
Accepted: 27 February 2024
Published: 07 March 2024

* Corresponding author. E-mail:
f.raimondo@fz-juelich.de

† Data used in preparation of this
article were obtained from the
Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database
(adni.loni.usc.edu). As such, the
investigators within the ADNI
contributed to the design and
implementation of ADNI and/or
provided data but did not participate
in analysis or writing of this report.
A complete listing of ADNI
investigators can be found at:
http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf

Published by GigaScience Press.

Preprint submitted at https:
//doi.org/10.48550/arXiv.2310.12568

This is an Open Access article
distributed under the terms of the
Creative Commons Attribution
License (https://creativecommons.
org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and
reproduction in any medium,
provided the original work is
properly cited.

Gigabyte, 2024, 1–16

Sami Hamdan1,2, Shammi More1,2, Leonard Sasse1,2,3, Vera Komeyer1,2,
Kaustubh R. Patil1,2, Federico Raimondo1,2,* and for the Alzheimer’s
Disease Neuroimaging Initiative†

1 Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany
2 Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Germany
3 Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany

ABSTRACT
The fast-paced development of machine learning (ML) and its increasing adoption in research
challenge researchers without extensive training in ML. In neuroscience, ML can help
understand brain-behavior relationships, diagnose diseases and develop biomarkers using data
from sources like magnetic resonance imaging and electroencephalography. Primarily, ML builds
models to make accurate predictions on unseen data. Researchers evaluate models’ performance
and generalizability using techniques such as cross-validation (CV). However, choosing a CV
scheme and evaluating an ML pipeline is challenging and, if done improperly, can lead to
overestimated results and incorrect interpretations. Here, we created julearn, an open-source
Python library allowing researchers to design and evaluate complex ML pipelines without
encountering common pitfalls. We present the rationale behind julearn’s design, its core features,
and showcase three examples of previously-published research projects. Julearn simplifies the
access to ML providing an easy-to-use environment. With its design, unique features, simple
interface, and practical documentation, it poses as a useful Python-based library for research
projects.

Subjects Software and Workflows, Neuroscience, Machine Learning

INTRODUCTION
Machine Learning (ML) is fast becoming an indispensable tool in many research fields. It is
rapidly gaining increasing importance within neuroscience, where it is used for
understanding brain-behavior relationships [1], predicting disease status and biomarker
development using diverse data modalities such as Magnetic Resonance Imaging (MRI) and
electroencephalogram. Such ML applications are driven by the availability of big data and
technological advances. However, for domain experts, acquiring relevant ML and
programming skills remains a significant challenge. This underscores the need for
user-friendly software solutions accessible to domain experts without extensive ML
training. Such solutions would enable them to quickly evaluate ML approaches.

An ML application aims to create a model that provides accurate predictions on new
unseen data—i.e., a generalizable model. In this context, the goal of a research project is
usually to demonstrate that a generalizable model exists for the prediction task at hand. As
a single set of samples is usually available, this goal is achieved by assessing the

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 1/16

mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
mailto:f.raimondo@fz-juelich.de
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.48550/arXiv.2310.12568
https://doi.org/10.48550/arXiv.2310.12568
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

generalization performance by training the model on a subset of the data and testing it on
the hold-out test data. If the model performs well on the test data, then the researcher
concludes that the prediction task can be solved in a generalizable manner. One of the most
prominent approaches to estimating the generalization performance is cross-validation
(CV). CV is a systematic subsampling approach, which trains and tests ML pipelines multiple
times using independent data splits [2]. The average performance over the splits is taken as
an estimate of generalization. To achieve good performance or other aims, like data
interpretation, it is often necessary to perform additional data processing, for example,
feature selection. This results in an ML pipeline that performs all the needed operations
from data manipulations, training and evaluation. Choosing a CV scheme and evaluating an
ML pipeline can be challenging, and if improperly used, it can lead to incorrect results and
misguided insights. This underscores the need for user-friendly software solutions
accessible to domain experts without in-depth ML and programming training.
Problematically, a common outcome of pitfalls is an overestimation of the generalization
performance when using CV, i.e., models are reported as being more accurate than what
they actually are. Here, we highlight two common pitfalls: data leakage and overfitting of
hyperparameters.

Data leakage occurs when the separation between the training and test data is not
strictly followed. For instance, using all available data in parts of an ML pipeline breaks the
required separation between training and test data. Such data leakage invalidates the
complete CV procedure, as information on the testing set is available during training. For
example, one might apply a preprocessing step, like z-standardization or Principal
Component Analysis (PCA), on the complete dataset before splitting the data. As the
preprocessing step is informed about the test data, the later created and transformed
training data will reflect the test data. Therefore, the learning algorithm can leverage this
leaked test set information through preprocessing and memorization instead of building a
predictive model, thus inflating the generalization estimation of CV. Most problematically,
data leakage can happen in many ways through programming errors or lack of awareness
of this danger.

A similar pitfall can occur when tuning hyperparameters by first observing their test set
performance. Hyperparameters are parameters not learnable by the algorithms, which
greatly impact their prediction performance. To tackle this optimization problem, many
practitioners repeat a simple CV to evaluate the test set performance of different
hyperparameter combinations. Problematically, both tuning and estimating out-of-sample
performance on the same test data breaks the clear distinction between training and
testing, as one both optimizes and evaluates the ML pipeline on the same test set. Notably,
this can happen very quickly over the natural progression of research projects while
iterating through ideas of appropriate hyperparameters. The solution to this pitfall is to
select the hyperparameters and evaluate the out-of-sample performance in different data
splits, which can be achieved by using a nested CV. In conclusion, both pitfalls can happen
easily and without malicious intent through a lack of ML or programming experience. We
developed the open-source Python package julearn to allow field experts to circumvent
these pitfalls by default while training and evaluating ML pipelines.

While ML experts can navigate these and other pitfalls using expert software, such as
scikit-learn (RRID:SCR_002577), domain experts might not always be aware of the pitfalls or
how to handle them. This is why we created julearn, to provide an out-of-the-box solution,

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 2/16

https://scicrunch.org/browse/resources/SCR_002577
https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

preventing common mistakes, usable by domain experts. Julearn was created to be easy to
use, accessible for researchers with diverse backgrounds, and to create reproducible results.
Furthermore, we engineered julearn so it is easy to extend and maintain, in order to keep
up with constantly evolving fields such as neuroscience and medicine. The accessibility and
usability aspects of julearn were decided to be at the core, as we aimed to help researchers
apply ML. We accomplished this through a careful design of the Application Programming
Interface (API), comprising only a few simple key functions and classes to create and
evaluate complex ML pipelines. Furthermore, we added several utilities that allow
investigators to gain a detailed understanding of the resulting pipelines. In order to keep
julearn up to date, we built it on top of scikit-learn [3, 4] and followed common best
practices of software engineering, like unit testing and continuous integration.

METHODS
Basic usage
Julearn is built on top of scikit-learn [3, 4], one of the most influential ML libraries in the
Python programming language. While scikit-learn provides a powerful interface for
programmers to create complex and individualized ML pipelines, julearn mainly adds an
abstraction layer, providing a simple interface for novice programmers. That is, a
user-friendly and easy-to-program API, tailored for users with basic programming skills or
limited knowledge of ML who wish to start with ML or evaluate complex ML pipelines in an
error-free way. Note that while scikit-learn is a general ML Library, julearn focuses on
so-called supervised ML tasks, which include any prediction task with known labels while
training and evaluating pipelines. Therefore, pipelines in the context of julearn always
refer to supervised ML pipelines. Importantly, rather than posing itself as a replacement or
competitor, julearn aims to enhance scikit-learn’s features while providing access to
scikit-learn’s functionality for supervised ML. Consequently, it is also possible to use a
custom scikit-learn compatible model.

To achieve a simple interface for supervised ML problems, we implemented a core
function called run_cross_validation to estimate a model’s performance using CV. In this
function, the user specifies the data, features, target, preprocessing and model name to
evaluate as an ML pipeline in a leakage-free, cross-validated manner. We chose the popular
and simple tabular data structure of Pandas’ DataFrame [5] for both the input data and the
output of run_cross_validation. This makes preparing the input, as well as inspecting and
analyzing the output of julearn, simple and transparent.

Furthermore, our API provides arguments for feature and target name(s) referring to the
columns of the input data frame. To use any of julearn’s ML algorithms, one only needs to
provide their name to the model argument of run_cross_validation. Here, julearn will
select the model according to the provided problem_type of either classification or
regression. Similarly, one can provide any of the supported preprocessing steps to
run_cross_validation by name. These steps are executed in a CV-consistent way without
the risk of data leakage. Such an interface simplifies the construction and use of ML
pipelines, in contrast to scikit-learn, where one must import different ML models depending
on the problem type, create a pipeline using both the imported preprocessing steps and the
ML model and finally use the cross_validate function (Figure 1).

While julearn does not aim to replace scikit-learn, it tries to simplify specific use cases,
including the creation of more complex supervised ML pipelines that need hyperparameter

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 3/16

https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Figure 1. Implementation of a simple CV pipeline using julearn (A) in contrast to scikit-learn (B). The julearn
pipeline needs only one import, while scikit-learn needs multiple ones. Furthermore, scikit-learn needs to import
the Support Vector Machine differently depending on the problem type, while julearn chooses the correct one
based on the problem type. The differences between julearn and scikit-learn are most influential for inexperienced
programmers who aim to create (complex) supervised ML pipelines. Julearn builds upon scikit-learn by providing
a simple interface that does not need any awareness of how to compose and find different classes.

tuning or preprocessing a subsample of features. This means that julearn can automatically
use nested CV for proper performance assessment in the context of hyperparameter tuning
[6] and apply preprocessing based on different feature types. These feature types include
distinctions like categorical vs continuous features or grouping variables, which can even
be used to do confound removal on a subsample of the data.

Model comparison
In ML applications, there is no standard or consensus of what a good or acceptable
performance is, as this usually depends on the task and domain. Thus, the process of
developing predictive models involves comparing models, either to null or dummy models,
or to previously published models (i.e., benchmarking). Given that CV produces estimates of
the model’s performance and that, depending on the CV strategy, these estimates might not
be independent from each other, special methods are required to test and conclude if the
performance of two models is different or not. For this reason, julearn
run_cross_validation output has additional information that can be used to make more
accurate model comparisons. Furthermore, it provides a stats module, which implements a
student’s t-test corrected for using the same CV approach to compare multiple ML
pipelines [7]. This correction is necessary as CV leads to a dependency between the folds,

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 4/16

https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Figure 2. Screenshot of the julearn scores viewer, depicting the negative mean absolute error in age prediction
from gray matter volume. Each dot represents the negative mean absolute error of each CV fold (5 times,
5-folds). Each column represents a different model: Gaussian Process Regression (GPR) (gauss), Relevance Vector
Regression (RVR) (rvr) and Support Vector Regression (SVR) (svm). Black lines indicate the mean and 95%
confidence intervals. The table at the bottom shows the pairwise statistics using the corrected t-test.

i.e., each iteration’s training set overlaps with the other ones. To gain a detailed view of the
models’ benchmark, one can also use julearn’s inbuilt visualization tool (see Figure 2 for
example).

Feature types
One key functionality that julearn provides, which is currently lacking in ML libraries such
as scikit-learn, is the ability to define feature types. This allows researchers to define sets of
variables and do selective processing, needed when dealing with categorical or
confounding variables. For this matter, julearn introduces the PipelineCreator to create
complex pipelines in which certain processing steps can be applied to one or more subsets
of features. Once the pipeline is defined, users need to provide a dictionary of any
user-defined type and the associated column names in their data as the X_types argument.
Such functionality allows to implement complex pipelines that transform features based on
their type, e.g., standardizing only continuous features and then deconfounding both
continuous and categorical features.

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 5/16

https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Hyperparameter tuning
As mentioned previously, hyperparameter tuning should be performed in a nested CV to
not overfit the predictions of a given pipeline. The PipelineCreator can be used to specify
sets of hyperparameters to be tested at each individual step by just using the add method
(Figure 3). Being able to first define a pipeline and its hyperparameters with the
PipelineCreator, and to then train and evaluate this pipeline with run_cross_validation,
makes performing leakage-free nested CV easy. In this nested CV, all hyperparameters are
optimized in an inner CV using a grid search by default. This default, like most of julearn’s
defaults, can be easily adjusted by providing any compatible searcher in the
run_cross_validation’s model_params argument. This is a drastic simplification compared to
a typical scikit-learn workflow, where one must create the pipeline manually by combining
different objects, wrap it inside a GridSearchCV object, and define the hyperparameter
options separately from the pipeline itself, using a complex syntax. Lastly, scikit-learn’s
GridSearchCV object must be provided to its cross_validate function.

Inspection and analysis
Inspection of ML pipelines is crucial when working in fields such as neuroscience and
medicine, as concepts like trustworthy ML are heavily dependent on the ability to draw
insights and conclusions from models. For this purpose, one needs to be able to inspect and
verify each pipeline step, check parameters, and evaluate feature importances and further
properties of ML pipelines. Julearn includes two functionalities: a preprocess function and
an Inspector class. The preprocess function allows users to process the data up to any step
of the pipeline, allowing them to check how the different transformations are applied. For
example, a user might be interested in examining the PCA components created or the
distribution of features after confound removal (see Figure 4 for example). The Inspector
object, on the other hand, allows us to inspect the models after estimating their
performance using CV. It helps users to check fold-wise predictions and obtain both the
hyper- and fitted parameters of the trained models (see Figure 5 for example). This enables
users to verify the robustness of the different parameter combinations and evaluate the
variability of the performance across folds. Ongoing efforts to increase julearn’s inspection
tools encompass integrating tools for explainable Artificial Intelligence (AI), such as
SHAP [8].

Neuroscience-specific features
In addition to julearn’s field-agnostic features, we also provide neuroscience-specific
functionalities. Confound removal in the form of confound regression, which is popularly
used in neuroscience, was implemented as the ConfoundRemover. This confound regression
can be trained on all features or only on specific subsamples defined by a grouping variable,
i.e., allowing neuroscientists to only train it on healthy participants as proposed in Dukart
et al. [9]. Additionally, we have included the Connectome Based Predictive Modelling
(CBPM) algorithm [10]. This transformer aggregates features significantly correlated with
the target into one or two features. This can be done separately for the positively and
negatively correlated features. Aggregation can be done using any user-specified
aggregation function, such as summation or mean. We plan to add more neuroscience
specific features, such as the integration of harmonization techniques, currently developed
in a separate project (juharmonize).

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 6/16

https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Figure 3. Example of julearn (A) and scikit-learn (B) training a typical ML pipeline in a CV consistent way. Both
use a grid search to find optimal hyperparameters. Note that julearn is able to specify the hyperparameters at
the same time as it defines each step. On the other hand, scikit-learn needs all hyperparameters to be defined
separately with a prefix indicating the step they belong to. This can become complex, especially when pipelines
are nested and multiple prefixes are needed.

Customization and extensibility
Julearn provides a simple interface to several important ML approaches but is also easily
customizable. Each component of julearn is built to be scikit-learn compatible, meaning
that any scikit-learn compatible model and transformer can be provided to
run_cross_validation and PipelineCreator. Other run_cross_validation arguments, like cv
and hyperparameter searchers, were implemented in a way to be extensible by any typical
scikit-learn object. This customizability of julearn helps users extend their usage of julearn

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 7/16

https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Figure 4. Example of the utility of the preprocess function. Once the model has been trained and evaluated using
run_cross_validation, the user can verify how the data is transformed in the pipeline until a certain step. The
whole functioning code as well as plots depicting the data points can be seen in julearn’s documentation (Examples
→ Inspection→ Preprocessing with variance threshold, zscore and PCA).

and prepares them for the case that they want to transition to scikit-learn to build unique
expert level ML pipelines.

EXAMPLES
To illustrate the functionality and quality attributes of julearn, we depict three independent
examples, showing how the analysis described in previously-published research projects
can be implemented with julearn.

Example 1: prediction of age using Gray Matter Volume (GMV)
derived from T1-weighted MRI images
Dataset
We used T1-weighted (T1w) MRI images from the publicly available Information eXtraction
from Images (IXI) dataset [11] (IXI, N = 562, age range = 20–86 years) for age estimation
similar to Franke et al. [12].

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 8/16

https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Figure 5. Example of the usage of the inspector. The run_cross_validation can return the inspector, allowing
the user to check the fold-wise predictions as well as the model parameters from each fold. A working example
can be found on julearn’s documentation (Examples→ Inspection→ Inspecting the fold-wise predictions).

Image preprocessing
T1w images were preprocessed using the Computational Anatomy Toolbox
(RRID:SCR_019184) version 12.8 [13]. The initial affine registration of T1w images was done
with higher than default accuracy (accstr = 0.8), to ensure accurate normalization and
segmentation. After bias field correction and tissue class segmentation, accurate optimized
Geodesic shooting [14] was used for normalization (regstr = 1). We used 1 mm Geodesic
Shooting templates and generated 1 mm isotropic images as output. Next, the normalized
Gray Matter (GM) segments were modulated for linear and non-linear transformations.

Feature spaces and models
A whole-brain mask was used to select 238,955 GM voxels. Then, smoothing with a 4 mm
FWHM Gaussian kernel and resampling using linear interpolation to 8 mm spatial
resolution was applied resulting in 3,747 features. We tested three regression models, GPR,
RVR and SVR, using this feature space to predict age.

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 9/16

https://scicrunch.org/browse/resources/SCR_019184
https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Prediction analysis
We used 5 times 5-fold CV to estimate the generalization performance of our pipelines.
Hyperparameters were tuned in the inner 5-fold CV. Features with low variance were
removed (threshold < 1 × 10−5). PCA was applied on the features to retain 100% variance.
The GPR model gave lowest generalization error (mean Mean Absolute Error (MAE) = −5.30
years), followed by RVR (MAE = −5.56) and SVR (MAE = −6.98). Corrected t-test revealed a
significant difference between GPR and SVM (p = 3.18 × 10−9), and between RVR and SVM (p
= 8.19 × 10−9). There was no significant difference between RVR and GPR
(p = 0.075). Results can be visualized with julearn’s scores viewer as depicted in Figure 2.

Example 2: confound removal
Dataset
For this example, we retrieved data conceptually similar to Dukart et al. [9]. We used the
Alzheimer’s Disease Neuroimaging Initiative https://adni.loni.usc.edu/ database including
498 participants and 68 features. We used age as a confound and the current diagnosis as
the target. To simplify the task, we only predicted whether a participant had some form of
impairment (mild cognitive impairment or Alzheimer’s disease) or not (control).

Prediction analysis
We aimed to conceptually replicate Figure 1 from Dukart et al. [9]. The authors proposed to
train confound regression on the healthy participants of a study and then transform all
participants using this confound regression. As part of their efforts, they compared two
pipelines using the same learning algorithm (i.e., SVM) [15]. One pipeline was trained to
directly classify healthy vs unhealthy participants without controlling for age, while a
second pipeline was configured to first control for age using their proposed method: train
the confound regression only on healthy participants. They evaluated the bias of age in the
predictions of these models by comparing the age distributions of healthy vs unhealthy
participants for each model’s misclassifications. This was done by computing, for each
pipeline, whether there is a significant age difference between these two groups of
participants. They found a significant difference when not controlling for age, but not when
controlling for age. With further experiments, they conclude that their method leads to less
age-related bias. In this example, we replicated the comparison between the two SVMs.
First, we built both pipelines using julearn and then compared their misclassified
predictions to find the same differences (Figure 6).

While the first pipeline (without confound removal) is straightforward to implement, the
second variant requires a complicated preprocessing step in which the confound removal
needs to be trained on a subsample of one specific column of the data. Thanks to julearn’s
support for feature types, the whole procedure can be easily implemented by indicating
which feature type are to be considered confounds (e.g., age), which column has the
subsampling data (e.g., current diagnosis) and which values should be considered (e.g.,
healthy). Note that the difference between all subjects in age is significant for our larger,
but not their smaller, sample, which can be attributed to the increased power due to the
large sample size.

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 10/16

https://adni.loni.usc.edu/
https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Figure 6. Replication of figure 1 in “Age characteristics of misclassified subjects using SVM” from Dukart et al. [9].
Performing a cross-validated confound removal trained only on the control group using julearn. Julearn greatly
simplifies the process of training CV-consistent preprocessing steps based on characteristics like control vs
experimental group. **** means a statistical significance at a p-value threshold of 0.0001 and ns that there is
no statistical difference at that threshold.

Example 3: prediction of fluid intelligence using connectome-based
predictive modelling
Dataset
We used data obtained from two resting-state functional Magnetic Resonance Imaging
(rs-fMRI) sessions from the Human Connectome Project Young-Adult (HCP-YA) S1200
release [16]. The details regarding the collection of behavioral data, rs-fMRI acquisition, and
image preprocessing have been described elsewhere [17, 18]. Here, we provide an overview.
The scanning protocol for HCP-YA was approved by the local Institutional Review Board at
Washington University in St. Louis. Retrospective analysis of these datasets was further
approved by the local Ethics Committee at the Faculty of Medicine at
Heinrich-Heine-University in Düsseldorf. We selected sessions for both phase encoding
directions (left-to-right and right-to-left) obtained on the first day of HCP-YA data collection.
Due to the HCP-YA’s family structure, we selected 399 unrelated subjects (matched for the
variable “Gender”), so that we could always maintain independence between folds during
cross-validation. In line with Finn et al. [19], we filtered out subjects with high estimates of
overall head motion (frame-to-frame head motion estimate (averaged across both day 1 rest
runs; HCP-YA: MOVEMENT_RELATIVERMS_MEAN > 0.14). This resulted in a dataset
consisting of 368 subjects (176 female, 192 male). Participants’ ages ranged from 22 to 37
(mean = 28.7, standard deviation = 3.85). The two sessions of rs-fMRI lasted 15 min each,
resulting in 30 min across both sessions. Scans were acquired using a 3T Siemens
connectome-Skyra scanner with a gradient-echo EPI sequence (TE = 33.1 ms,
TR = 720 ms, flip angle = 52°, 2.0 mm isotropic voxels, 72 slices, multiband factor of 8).

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 11/16

https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Image preprocessing
Data from the rs-fMRI sessions in the HCP-YA had already undergone the HCP’s minimal
preprocessing pipeline [17], including motion correction and registration to standard space.
Additionally, the Independent Component Analysis and FMRIB’s ICA-based X-noiseifier
(ICA-FIX) procedure [20] were applied to remove structured artefacts. Lastly, the 6
rigid-body parameters, their temporal derivatives and the squares of the 12 previous terms
were regressed out, resulting in 24 parameters. In addition, we regressed out mean time
courses of white matter, cerebro-spinal fluid and global signal, as well as their squared
terms, the temporal derivatives of the mean signals and their squared terms as confounds,
resulting in 12 parameters (4 for each noise component). The signal was linearly detrended
and bandpass filtered at 0.01–0.08 Hz using nilearn.image.clean_img, The resulting
voxel-wise time series were then aggregated using the Shen parcellation [19] consisting of
268 parcels. Functional Connectivity (FC) was estimated for each rs-fMRI session as
Pearson’s correlation between each pair of parcels, resulting in a symmetric 268 × 268
matrix. These two FC matrices were further averaged resulting in one FC matrix per subject.
One half of the symmetric matrix as well as the diagonal were discarded so that only
unique edges were used as features in the prediction workflow.

Prediction analysis
First, we aimed to reproduce Finn et al. [19] prediction pipeline using the CBPM framework
and the Leave-One-Out Cross-Validation (LOO-CV) scheme. Specifically, we reconstructed
the workflow used to reproduce Figure 5a in Finn et al. [19]. As a prediction target, we used
subjects’ score on the Penn Matrix Test (PMAT24_A_CR). This is a non-verbal reasoning
assessment and a measure of fluid intelligence. CBPM first performs correlation-based
univariate feature selection based on a pre-specified significance threshold. Selected
features are further divided into positively and negatively correlated features and then
separately summed up resulting in two features. Subsequently, a linear regression is fitted
either on both or one of these features based on user preferences. The results here were
obtained using the positive-feature network at a feature selection threshold of p < 0.01 in
line with Figure 5a from Finn et al. [19]. We observed a similar trend in our results albeit
with a lower correlation between observed and predicted values (see Figure 7). In addition,
we also provide results for a 10-Fold cross-validation with 10 repeats. In this analysis,
we also tested CBPM using positive- and negative-feature networks individually as
well as both feature networks combined with varying thresholds for feature selection (0.01,
0.05, 0.1).

DISCUSSION
Julearn aims to bridge the gap between domain expertise in neuroscience and the
application of ML pipelines. Toward that goal, julearn provides a simple interface using two
key API points only. First, the run_cross_validation function provides functionalites to
evaluate common ML pipelines. Second the PipelineCreator provides means to devise
complex ML pipelines that can be then evaluated using run_cross_validation. Additional
functionalities are also provided to guide and help users to inspect and evaluate the
resulting CV scores. In fact, julearn provides a complete workflow for ML that has already
been used in several publications [21, 22]. Furthermore, the customizability and
open-source nature of julearn will help it grow and extend its functionality.

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 12/16

https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Figure 7. Results of the prediction of fluid intelligence using CBPM on HCP-YA data as in Finn et al. [19]. Left panel
depicts the predicted (y-axis) vs the ground truth (x-axis) values for each sample in a LOO-CV scheme, following
Figure 5a in Finn et al. [19]. Right panel depicts the mean correlation values (r) across folds, for a 10-times 10-fold
CV scheme, using different thresholds (colors) and considering either negative correlations, positive correlations,
or both kinds of correlations (columns).

Julearn does not aim to replace core ML libraries such as scikit-learn. Rather, it aims to
simplify the entry into the ML world by providing an easy-to-use environment with built-in
guards against some of the most common ML pitfalls, such as data leakage that can happen
due to not using nested cross-validation and when performing confound removal.
Furthermore, julearn is not created to compete with AutoML approaches [23–25], which try
to automate the preprocessing and modelling over multiple algorithms and sets of
hyperparameters. While these approaches are valid and powerful, they do not offer the full
functionalities required in many bio-medical research fields, such as nested cross
validation and confound removal. Furthermore, a researcher might require more control
over model types, parameters and interpretability, which might not be easily achievable
with the current AutoML libraries. Lastly, there are other libraries, such as photon [26],
Neurominer [27] or Neuropredict [28], that try to build on top of powerful ML libraires to
create different interfaces with unique features for field experts. All these libraries are
important for a vibrant open-source community. Hence, julearn‘s unique features and
simple interface will be useful for many research projects.

AVAILABILITY OF SOURCE CODE
Julearn’s code is available in GitHub [29] with the corresponding documentation in GitHub
Pages [30]. The code used for the examples in this manuscript is available at [31], with
instructions on how to get the publicly available data.

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 13/16

https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

• Project name: Julearn
• Project home page: https://juaml.github.io/julearn/
• Operating system(s): Platform independent
• Programming language: Python
• License: GNU AGPLv3
• RRID: SCR_024881
• biotools: julearn

DATA AVAILABILITY
The data used in this manuscript is publicly available following each dataset requirements.
Information on the dataset sources is provided in the description of each example.
Snapshots of the underlying code are available in the GigaDB repository [32].

LIST OF ABBREVIATIONS
API, Application Programming Interface; CBPM, Connectome Based Predictive Modelling;
CV, cross-validation; FC, Functional Connectivity; GM, Gray Matter; GPR, Gaussian Process
Regression; HCP-YA, Human Connectome Project Young-Adult; IXI, Information eXtraction
from Images; LOO-CV, Leave-One-Out Cross-Validation; MAE, Mean Absolute Error; ML,
machine learning; MRI, Magnetic Resonance Imaging; PCA, Principal Component Analysis;
rs-fMRI, resting-state functional Magnetic Resonance Imaging; RVR, Relevance Vector
Regression; SVR, Support Vector Regression; T1w, T1-weighted.

DECLARATIONS
Ethics approval and consent to participate
The authors declare that ethical approval was not required for this type of research.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Consent for publication was obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI; https://adni.loni.usc.edu/) Data and Publications Committee. Other datasets do not
require consent for publication.

Authors’ contributions
SH and FR designed the library. SH, LS, VK, SM, KRP and FR contributed to the development
and testing of the library, wrote and reviewed the manuscript. VK contributed to the
structural design and writing of julearn’s documentation. SM and FR wrote the code for
Example 1, SH and FR wrote the code for Example 2 and LS wrote the code for Example 3.

Funding
This work was partly supported by the Helmholtz-AI project DeGen (ZT-I-PF-5-078), the
Helmholtz Portfolio Theme “Supercomputing and Modeling for the Human Brain” the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project PA 3634/1-1
and project-ID 431549029–SFB 1451 project B05, the Helmholtz Imaging Platform and
eBRAIN Health (HORIZON-INFRA-2021-TECH-01).

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 14/16

https://juaml.github.io/julearn/
https://scicrunch.org/browse/resources/SCR_024881
https://adni.loni.usc.edu/
https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

Data collection and sharing for this project was funded by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and
DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by
the National Institute on Aging, the National Institute of Biomedical Imaging and
Bioengineering, and through generous contributions from the following: AbbVie,
Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech;
BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.;
Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd
and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd; Janssen
Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson
Pharmaceutical Research & Development LLC; Lumosity; Lundbeck; Merck & Co., Inc.; Meso
Scale Diagnostics, LLC; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical
Company; and Transition Therapeutics. The Canadian Institutes of Health Research is
providing funds to support ADNI clinical sites in Canada. Private sector contributions are
facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The
grantee organization is the Northern California Institute for Research and Education, and
the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University
of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at
the University of Southern California.

Acknowledgements
We want to thank the INM-7 and early adopters of julearn for their valuable contribution at
early stages, shaping the direction of our efforts in developing this tool.

REFERENCES
1 Wu J, Li J, Eickhoff SB et al. The challenges and prospects of brain-based prediction of behaviour. Nat.

Hum. Behav., 2023; 7(8): 1255–1264. doi:10.1038/s41562-023-01670-1.

2 Varoquaux G, Raamana PR, Engemann DA et al. Assessing and tuning brain decoders:
cross-validation, caveats, and guidelines. NeuroImage, 2017; 145: 166–179.
doi:10.1016/j.neuroimage.2016.10.038.

3 Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn: Machine Learning in Python. J. Mach.
Learn. Res., 2012; 12: 2825–2830. doi:10.1007/s13398-014-0173-7.2.

4 Abraham A, Pedregosa F, Eickenberg M et al. Machine learning for neuroimaging with scikit-learn.
Front. Neuroinform., 2014; 8: 0000341. doi:10.3389/fninf.2014.00014.

5 McKinney W. Data Structures for Statistical Computing in Python. In: Proceedings of the 9th Python in
Science Conference, Austin, Texas. 2010; pp. 56–61, doi:10.25080/Majora-92bf1922-00a.

6 Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction: a
review. JAMA Psychiatry, 2020; 77(5): 534–540. doi:10.1001/jamapsychiatry.2019.3671.

7 Nadeau C, Bengio Y. Inference for the Generalization Error. Mach. Learn., 2003; 52(3): 239–281.
doi:10.1023/A:1024068626366.

8 Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: NIPS’17: Proceedings
of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran
Associates Inc., 2017; pp. 4768–4777.

9 Dukart J, Schroeter ML, Mueller K et al. Age Correction in Dementia – Matching to a Healthy Brain.
PLoS One, 2011; 6(7): e22193. doi:10.1371/journal.pone.0022193.

10 Shen X, Finn ES, Scheinost D et al. Using connectome-based predictive modeling to predict individual
behavior from brain connectivity. Nat. Protoc., 2017; 12(3): 506–518. doi:10.1038/nprot.2016.178.

11 Biomedical Image Analysis Group, Imperial College London. IXI Dataset.
https://brain-development.org/ixi-dataset/.

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 15/16

https://doi.org/10.1038/s41562-023-01670-1
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1001/jamapsychiatry.2019.3671
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1371/journal.pone.0022193
https://doi.org/10.1038/nprot.2016.178
https://brain-development.org/ixi-dataset/
https://doi.org/10.46471/gigabyte.113

S. Hamdan et al.

12 Franke K, Ziegler G, Klöppel S et al. Alzheimer’s Disease Neuroimaging Initiative. Estimating the age
of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of
various parameters. NeuroImage, 2010; 50(3): 883–892. doi:10.1016/j.neuroimage.2010.01.005.

13 Gaser C, Dahnke R, Thompson PM et al. CAT - A Computational Anatomy Toolbox for the Analysis of
Structural MRI Data. bioRxiv. 2022; https://doi.org/10.1101/2022.06.11.495736.

14 Ashburner J, Friston KJ. Diffeomorphic registration using geodesic shooting and Gauss–Newton
optimisation. NeuroImage, 2011; 55(3): 954–967. doi:10.1016/j.neuroimage.2010.12.049.

15 Berwick R, Idiot V. An Idiot’s guide to Support vector machines (SVMs) SVMs: A New Generation of
Learning Algorithms Key Ideas. 1990; p. 1–28, https://web.mit.edu/6.034/wwwbob/svm.pdf.

16 Van Essen DC, Smith SM, Barch DM et al. The WU-Minn Human Connectome Project: an overview.
NeuroImage, 2013; 80: 62–79. doi:10.1016/j.neuroimage.2013.05.041.

17 Glasser MF, Sotiropoulos SN, Wilson JA et al. The minimal preprocessing pipelines for the Human
Connectome Project. NeuroImage, 2013; 80: 105–124. doi:10.1016/j.neuroimage.2013.04.127.

18 Barch DM, Burgess GC, Harms MP et al. Function in the human connectome: task-fMRI and individual
differences in behavior. NeuroImage, 2013; 80: 169–189. doi:10.1016/j.neuroimage.2013.05.033.

19 Finn ES, Shen X, Scheinost D et al. Functional connectome fingerprinting: identifying individuals
using patterns of brain connectivity. Nat. Neurosci., 2015; 18(11): 1664–1671. doi:1010.1038/nn.4135.

20 Salimi-Khorshidi G, Douaud G, Beckmann CF et al. Automatic denoising of functional MRI data:
combining independent component analysis and hierarchical fusion of classifiers. NeuroImage, 2014;
90: 449–468. doi:10.1016/j.neuroimage.2013.11.046.

21 Mortaheb S, Van Calster L, Raimondo F et al. Mind blanking is a distinct mental state linked to a
recurrent brain profile of globally positive connectivity during ongoing mentation. Proc. Natl. Acad.
Sci. USA, 2022; 119(41): e2200511119. doi:10.1073/pnas.2200511119.

22 More S, Antonopoulos G, Hoffstaedter F et al. Brain-age prediction: a systematic comparison of
machine learning workflows. NeuroImage, 2023; 270: 119947. doi:10.1016/j.neuroimage.2023.119947.

23 Ferreira L, Pilastri A, Martins CM et al. A Comparison of AutoML Tools for Machine Learning, Deep
Learning and XGBoost. In: 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021;
pp. 1–8, ISSN: 2161-4407. doi:10.1109/IJCNN52387.2021.9534091.

24 Züller MA, Huber MF. Benchmark and Survey of Automated Machine Learning Frameworks. J. Artif.
Intell. Res., 2021; 70: 409–472. doi:1010.1613/jair.1.11854.

25 Waring J, Lindvall C, Umeton R. Automated machine learning: review of the state-of-the-art and
opportunities for healthcare. Artif. Intell. Med., 2020; 104: 101822. doi:10.1016/j.artmed.2020.101822.

26 Leenings R, Winter NR, Plagwitz L et al. PHOTONAI-A Python API for rapid machine learning model
development. PLoS One, 2021; 16(7): e0254062. doi:10.1371/journal.pone.0254062.

27 Koutsouleris N. Neurominer Website. http://proniapredictors.eu/neurominer/index.html.

28 Raamana PR. neuropredict: easy machine learning and standardized predictive analysis of
biomarkers. Zenodo, 2017; https://doi.org/10.5281/zenodo.1058993.

29 Julearn’s Github repository. https://github.com/juaml/julearn.

30 Julearn’s Documentation Website. https://juaml.github.io/julearn/.

31 Julearn. Manuscript’s Github repository. https://github.com/juaml/julearn_paper.

32 Hamdan S, More S, Sasse L et al. Supporting data for ”Julearn: an easy-to-use library for leakage-free
evaluation and inspection of ML models”. GigaScience Database, 2024; https://doi.org/10.5524/102501.

Gigabyte, 2024, DOI: 10.46471/gigabyte.113 16/16

https://doi.org/10.1016/j.neuroimage.2010.01.005
https://doi.org/10.1101/2022.06.11.495736
https://doi.org/10.1016/j.neuroimage.2010.12.049
https://web.mit.edu/6.034/wwwbob/svm.pdf
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.05.033
https://1010.1038/nn.4135
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1073/pnas.2200511119
https://doi.org/10.1016/j.neuroimage.2023.119947
https://doi.org/10.1109/IJCNN52387.2021.9534091
https://1010.1613/jair.1.11854
https://doi.org/10.1016/j.artmed.2020.101822
https://doi.org/10.1371/journal.pone.0254062
http://proniapredictors.eu/neurominer/index.html
https://doi.org/10.5281/zenodo.1058993
https://github.com/juaml/julearn
https://juaml.github.io/julearn/
https://github.com/juaml/julearn_paper
https://doi.org/10.5524/102501
https://doi.org/10.46471/gigabyte.113

	Introduction
	Methods
	Basic usage
	Model comparison
	Feature types
	Hyperparameter tuning
	Inspection and analysis
	Neuroscience-specific features
	Customization and extensibility

	Examples
	Example 1: prediction of age using Gray Matter Volume (GMV) derived from T1-weighted MRI images
	Dataset
	Image preprocessing
	Feature spaces and models
	Prediction analysis

	Example 2: confound removal
	Dataset
	Prediction analysis

	Example 3: prediction of fluid intelligence using connectome-based predictive modelling
	Dataset
	Image preprocessing
	Prediction analysis

	Discussion
	Availability of source code
	Data availability
	List of abbreviations
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors’ contributions
	Funding
	Acknowledgements

